Oceanic calcium changes from enhanced weathering during the Paleocene‐Eocene thermal maximum: No effect on calcium‐based proxies
نویسندگان
چکیده
[1] During the Paleocene‐Eocene thermal maximum (PETM ∼55 Myr ago), prominent climatic and biogeochemical changes took place in the atmosphere, ocean, and on land. For example, deep‐sea temperatures rose by 5°C to 6°C, while sea surface temperatures at high latitudes increased by up to 9°C. In the sedimentary record, the onset of the PETM is marked by widespread dissolution of calcium carbonate on the seafloor. In addition, there is evidence for globally higher humidity, precipitation and increased weathering during the PETM. Both calcium carbonate dissolution and enhanced weathering probably affected the seawater calcium concentration. Here we investigate implications that possible changes in the ocean’s calcium inventory may have had on boron/calcium (B/Ca) and magnesium/calcium (Mg/Ca) ratios, which are used as proxies for deep water carbonate chemistry and temperature, respectively. We also examine effects on dCa of seawater, which is used as an indicator for variations in the marine calcium cycle. We focus on the magnitude of change in the ocean’s calcium ion concentration as a result of the carbon perturbation, which resulted in increased weathering fluxes and the dissolution of calcite on the ocean floor during the PETM. Different ranges of carbon input scenarios and their effect on ocean chemistry were examined using the Long‐term Ocean‐atmosphere‐Sediment CArbon cycle Reservoir (LOSCAR) model. We found that under the most plausible scenario, the calcium ion concentration change (D[Ca]) was less than 0.7% and around 2% in the most extreme scenario. Our results show that B/Ca and Mg/Ca proxies were not affected within analytical precision by changes in oceanic calcium due to weathering and carbonate dissolution during the PETM. The most extreme scenario (D[Ca] = 2%) would result in ∼4 mmol kg uncertainty in reconstruction of D[CO3 ]. The same scenario affects the temperature reconstruction by ∼0.2°C. The effect on the ocean’s calcium isotope budget was insignificant as well, resulting in DdCasw of less than 0.05‰.
منابع مشابه
Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum
During the Paleocene-Eocene Thermal Maximum (PETM, ca. 56 Ma), thousands of gigatons of carbon were released into the ocean and atmosphere over several thousand years, offering the opportunity to study the response of ocean biogeochemistry to a carbon cycle perturbation of a similar magnitude to projected anthropogenic CO2 release. PETM scenarios typically invoke accelerated chemical weathering...
متن کاملEnhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene-Eocene thermal maximum
[1] The carbonate saturation profile of the oceans shoaled markedly during a transient global warming event known as the Paleocene-Eocene thermal maximum (PETM) (circa 55 Ma). The rapid release of large quantities of carbon into the ocean-atmosphere system is believed to have triggered this intense episode of dissolution along with a negative carbon isotope excursion (CIE). The brevity (120–220...
متن کاملDeep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum.
A rapid increase in greenhouse gas levels is thought to have fueled global warming at the Paleocene-Eocene Thermal Maximum (PETM). Foraminiferal magnesium/calcium ratios indicate that bottom waters warmed by 4 degrees to 5 degrees C, similar to tropical and subtropical surface ocean waters, implying no amplification of warming in high-latitude regions of deep-water formation under ice-free cond...
متن کاملPatterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean
[1] Eocene Thermal Maximum 2 (ETM2 or H1; 53.7 Ma) represents a short-lived warming episode, associated with the injection of a large mass of C-depleted carbon into the ocean-atmosphere system. The mass of injected carbon, the extent of deep sea dissolution, and the amount of warming during ETM2 appear to be approximately half of those documented for the Paleocene-Eocene thermal maximum (PETM, ...
متن کاملA continental shelf perspective of ocean acidification and temperature evolution during the Paleocene-Eocene Thermal Maximum
A rapid and large injection of isotopically light carbon into the ocean-atmosphere reservoirs is signaled by a negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary ~56 m.y. ago. To better understand the extent of ocean warming and acidification associated with the carbon injection we generated elemental and isotopic records of surface and thermocline planktonic foraminifera ...
متن کامل